Hamiltonian Chromatic Number of Graphs

Dr. B. Ramireddy ${ }^{1}$, U. Mohan Chand ${ }^{2}$, A.Sri Krishna Chaitanya ${ }^{3}$, Dr. B.R. Srinivas ${ }^{4}$
1) Professor \& H.O.D, Hindu College, Guntur, (A.P.) INDIA.
2) Associate Professor of Mathematics \& H.O.D, Rise Krishna Sai Prakasam Group of Institutions, Ongole, (A.P) INDIA.
3) Associate Professor of Mathematics \& H.O.D, Chebrolu Engineering College, Chebrolu, Guntur Dist. (A.P)
4) Professor of Mathematics, St. Mary's Group of Institutions, Chebrolu, Guntur Dist. (A.P) INDIA.

Abstract

This paper studies the Hamiltonian coloring and Hamiltonian chromatic number for different graphs .the main results are 1.For any integer n greater than or equal to three, Hamiltonian chromatic number of C_{n} is equal to $n-2$. 2. G is a graph obtained by adding a pendant edge to Hamiltonian graph H , and then Hamiltonian chromatic number of G is equal to $\mathrm{n}-1.3$. For every connected graph G of order n greater than or equal to 2 , Hamiltonian chromatic number of G is not more than one increment of square of ($n-2$). Mathematics Subject Classification 2000: 03Exx, 03E10, 05CXX, 05C15, 05C45. Key words: Chromatic number, Hamiltonian coloring, Hamiltonian chromatic number, pendant edge, spanning connected graph.

I. Introduction

Generally in a $(d-1)$ radio coloring of a connected graph G of diameter d , the colors assigned to adjacent vertices must differ by at least d-1, the colors assigned to two vertices whose distance is 2 must differ by at least d-2, and so on up to antipodal vertices, whose colors are permitted to be the same. For this reason, (d-1) radio colorings are also referred to as antipodal colorings.

In the case of an antipodal coloring of the path P_{n} of order $\mathrm{n} \geq 2$, only the two end-vertices are permitted to be colored the same. If u and v are distinct vertices of P_{n} and $d(u, v)=i$, then $\mid c(u)-c$ (v) $\mid \geq n-1-i$. Since P_{n} is a tree, not only is i the length of a shortest $u-u$ path in P_{n}, it is the length of the only $u-v$ path in P_{n}. In particular, is the length of a longest $\mathrm{u}-\mathrm{v}$ path?

The detour distance $\mathrm{D}(\mathrm{u}, \mathrm{v})$ between two vertices u and v in a connected graph G is defined as the length of a longest $u-v$ path in G. Hence the length of a longest $u-v$ path in P_{n} is $D(u, v)=d(u$, $v)$. Therefore, in the case of the path P_{n}, an antipodal coloring of P_{n} can also be defined as a vertex coloring c that satisfies.
$\mathbf{D}(\mathbf{u}, \mathbf{v})+|\mathbf{c}(\mathbf{v})| \geq \mathbf{n}-\mathbf{1}$, for every two distinct vertices u and v of P_{n}.
§1.1 Definition: Vertex coloring c that satisfy were extended from paths of order n to arbitrary connected graphs of order n by Gary Chartrand, Ladislav Nebesky, and Ping Zhang .A Hamiltonian coloring of a connected graph G of order n is a vertex coloring c such that, $\mathbf{D}(\mathbf{u}, \mathbf{v})+|\mathbf{c}(\mathbf{v})| \geq \mathbf{n}-\mathbf{1}$, for every tow
distinct vertices u and v of G. the largest color assigned to a vertex of G by c is called the value of c and is denoted by hc(c). The Hamiltonian chromatic number hc (G) is the smallest value among all Hamiltonian colorings of G.
EX: Figure. 1 (a) shows a graph H of order 5. A vertex coloring c of H is shown in Figure. 1 (b). Since $\mathrm{D}(\mathrm{u}, \mathrm{v})+|\mathrm{c}(\mathrm{u})-\mathrm{c}(\mathrm{v})| \geq 4$ for every two distinct vertices u and u of H, it follows that c is a Hamiltonian coloring and so hc(c) $=4$. Hence hc (H) ≥ 4. Because no two of the vertices t, w, x, and y are connected by a Hamiltonian path, these must be assigned distinct colors and so $\mathrm{hc}(\mathrm{H}) \geq 4$. Thus he $(H)=4$.

(a)

(b)

1. A graph with Hamiltonian chromatic number 4

If a connected graph G of order n has Hamiltonian chromatic number 1 , then $\mathrm{D}(\mathrm{u}, \mathrm{v})=\mathrm{n}-1$ for every two distinct vertices u and v of G and consequently G is Hamiltonian-connected, that is, every two vertices of G are connected by a

Hamiltonian pat. Indeed, hc $(G)=1$ if and only if G is Hamiltonian - connected. Therefore, the Hamiltonian Chromatic Number of a connected graph G can be considered as a measure of how close G is to being Hamiltonian connected. That is the closer hc (G) is to 1 , the closer G is to being Hamiltonian connected. The three graphs $\mathrm{H}_{1}, \mathrm{H} 2$ and H_{3} shown in below figure 2 are all close (in this sense) to being Hamiltonian-connected since hc (H_{i}) $=2$ for $i=1,2,3$.
$\int_{0}^{0} 1$

H_{1}
H_{2}
H_{3}
2. Three graphs with Hamiltonian chromatic number 2

II. Theorem: For every integer $n \geq 3$, hc

$$
\left(\mathrm{K}_{1, \mathrm{n}-1}\right)=(\mathrm{n}-2)^{2}+1
$$

Proof: Since hc $\left(\mathrm{K}_{1,2}\right)=2\left(\right.$ See H_{1} in Figure 2) we may assume that $\mathrm{n} \geq 4$.
Let $G=K_{1, n-1}$ where $V(G)=\left\{v_{1}, v_{2} \ldots . . v_{n}\right\}$ and v_{n} is the central vertex. Define the coloring c of G by c $\left(v_{n}\right)=1$ and $C\left(v_{i}\right)=(n-1)+(i-1)(n-3)$ for $1 \leq i \leq n-$ 1.Then c is a Hamiltonian coloring of G and hc $(\mathrm{G}) \leq \mathrm{hc}(\mathrm{c})=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)=(\mathrm{n}-1)+(\mathrm{n}-2)(\mathrm{n}-3)=(\mathrm{n}-2)^{2}$ + 1.It remains to show that hc $(\mathrm{G}) \geq(\mathrm{n}-2)^{2}+1$.
Let c be a Hamiltonian coloring of G such that hc(c) $=$ hc (G). Because G contains no Hamiltonian path, c assigns distinct colors to the vertices of G. We may assume that $\mathrm{C}\left(\mathrm{v}_{1}\right)<\mathrm{c}\left(\mathrm{v}_{2}\right)<\ldots<\mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)$. We now consider three cases, depending on the color assigned to the central vertex v_{n}.

Case 1.

$\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right)=1$.
Since
$D\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=1$ and $\mathrm{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)=2$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$.
It follows that
$\mathrm{C}\left(\mathrm{v}_{\mathrm{n}-1}\right) \geq 1+(\mathrm{n}-2)+(\mathrm{n}-2)(\mathrm{n}-3)=(\mathrm{n}-2)^{2}+1$
And so
$\underline{\mathrm{hc}}(\mathrm{G})=\mathrm{hc}(\mathrm{c})=\mathrm{c}\left(\mathrm{V}_{\mathrm{n}-1}\right) \geq(\mathrm{n}-2)^{2}+1$.
Case 2.
$\mathrm{C}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{hc}(\mathrm{c})$
Thus, in this case,
$1=\mathrm{c}\left(\mathrm{v}_{1}\right)<\mathrm{c}\left(\mathrm{v}_{2}\right)<\ldots<\mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)<\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right)$
Hence
$\mathrm{C}\left(\mathrm{v}_{\mathrm{n}}\right) \geq 1+(\mathrm{n}-2)(\mathrm{n}-3)+(\mathrm{n}-2)=(\mathrm{n}-2)^{2}+1$
And so
$\mathrm{hc}(\mathrm{G})=\mathrm{hc}(\mathrm{v})=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right) \geq(\mathrm{n}-2)^{2}+1$.

Case 3.

$\bar{C}\left(v_{j}\right)<c\left(v_{n}\right)<c\left(v_{j+1}\right)$ for some integer j with $1 \leq j \leq$ $\mathrm{n}-2$.
Thus $\mathrm{c}\left(\mathrm{v}_{1}\right)=1$ and $\mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{hc}(\mathrm{c})$.
in this case
$\mathrm{C}\left(\mathrm{V}_{\mathrm{j}}\right) \geq 1+(\mathrm{j}-1)(\mathrm{n}-3)$,
$\mathrm{C}(\mathrm{vn}) \geq \mathrm{c}\left(\mathrm{v}_{\mathrm{j}}\right)+(\mathrm{n}-2)$
$C\left(v_{j+1}\right) \geq c\left(v_{n}\right)+(n-2)$ and
$C\left(v_{n-1}\right) \geq c\left(v_{j+1}\right)+[(n-1)-(j+1)](n-3)$.
Therefore,
$\mathrm{C}\left(\mathrm{v}_{\mathrm{n}-1}\right) \geq 1+(\mathrm{j}-1)(\mathrm{n}-3)+2(\mathrm{n}-2)+(\mathrm{n}-\mathrm{j}-2)(\mathrm{n}-3)$
$=(2 n-3)+(n-3)^{2}=(n-2)^{2}+2>(n-2)^{2}+1$.
And so $\mathrm{hc}(\mathrm{G})=\mathrm{hc}(\mathrm{c})=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)>(\mathrm{n}-2)^{2+} 1$.
Hence in any case,
$\mathrm{hc}(\mathrm{G}) \geq(\mathrm{n}-2)^{2}+1$ and so hc $(\mathrm{G})=(\mathrm{n}-2)^{2}+1$.

III. Theorem: For every integer $\mathrm{n} \geq 3$, hc $(\mathrm{Cn})=\mathbf{n - 2}$.

Proof.

Since we noted that hc $\left(C_{n}\right)=n-2$ for $n=3,4,5$. We may assume that $\mathrm{n} \geq 6$. Let $\mathrm{C}_{\mathrm{n}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right)$. Because the vertex coloring c of C_{n} defined by $\mathrm{c}\left(\mathrm{v}_{1}\right)=\mathrm{c}\left(\mathrm{v}_{2}\right)=1, \mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}-2$ and $\mathrm{c}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{i}-1$ for $3 \leq \mathrm{i} \leq \mathrm{n}-2$ is a Hamiltonian coloring, it follows that $\mathrm{hc}\left(\mathrm{C}_{\mathrm{n}}\right) \leq \mathrm{n}-2$.Assume, to the contrary, that hc $\left(\mathrm{C}_{\mathrm{n}}\right)<$ $\mathrm{n}-2$ for some integer $\mathrm{n} \geq 6$. Then there exists a Hamiltonian ($n-3$) coloring c of C_{n}. We consider two cases, according to whether n is odd or n is even.

Case 1.

\mathbf{n} is odd: Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer $\mathrm{k} \geq 3$. Hence there exists a Hamiltonian (2k-2) coloring c of C_{n}. Let,
$A=\{1,2 \ldots k-1\}$ and $B=\{k, k+1 \ldots 2 k-2\}$
For every vertex u of C_{n}, there are two vertices v of C_{n} such that $D(u, v)$ is minimum (and $d(u, v)$ is maximum), namely $D(u, v)=d(u, v)+1=k+1$. For u $=v i$, these two vertices v are v_{i+k} and v_{i+k+1} (where the addition in $\mathrm{i}+\mathrm{k}$ and $\mathrm{i}+\mathrm{k}+1$ is performed modulo n). Since c is a Hamiltonian coloring.

D (u, v) $+|\mathrm{c}(\mathrm{u})-\mathrm{c}(\mathrm{v})| \geq \mathrm{n}=\mathrm{l}=2 \mathrm{k}$.BecauseD ($\mathrm{u}, \mathrm{v})=$ $\mathrm{k}+1$, it follows that
$|c(u)-c(v)| \geq k-1$.
Therefore, if $c(u) \in A$, then the colors of these two vertices v with this property must belong to B . In particular, if $c\left(v_{i}\right) \in A$, then $\left(v_{i+k}\right) \in B$. Suppose that there are a vertices of C_{n} whose colors belong to A and b vertices of C_{n} whose colors belong to B. Then $b \geq a$ However, if $c\left(v_{i}\right) \in B$, then $c\left(v_{i+k}\right.$ belongs to a implying that $\quad a \geq b$ and so. $a=b$. since $a+b=n$ and n is odd, this is impossible.

Case 2.
\underline{n} is even: Then $n=2 k$ for some integer $k \geq 3$. Hence there exists a Hamiltonian (2k-3) - coloring c of C_{n}. For every vertex u of C_{n}, there is a unique vertex v of C_{n} for which $D(u, v)$ is minimum (and $d(u, v)$ is maximum), namely, $d(u, v)=k$. For $u=v_{i}$, this
vertex v is $\mathrm{v}_{\mathrm{i}+\mathrm{k}}$ (where the addition in $\mathrm{i}+\mathrm{k}$ is performed modulo n).

Since c is a Hamiltonian coloring, $\mathrm{D}(\mathrm{u}, \mathrm{v})+\mid \mathrm{c}(\mathrm{u})-$ $\mathrm{c}(\mathrm{v}) \mid \geq \mathrm{n}-1=2 \mathrm{k}-1$. Because $\mathrm{D}(\mathrm{u}, \mathrm{v})=\mathrm{k}$, it follows that $|\mathrm{c}(\mathrm{u})-\mathrm{c}(\mathrm{v})| \geq \mathrm{k}-1$. This implies, however, that if
$c(u)=k-1$, then there is no color that can be assigned to u to satisfy this requirement. Hence no vertex of C_{n} can be assigned the color $\mathrm{k}-1$ by c .
Let, $A=\{1,2 \ldots \mathrm{k}-2\}$ and $B=\{k, k+1 \ldots 2 k-3\}$.
Thus $\quad|A|=|B|=k-2$. If $c\left(v_{i}\right) \in A$, then c $\left(v_{i+k}\right) \in B$. Also, if $c\left(v_{i}\right) \in B$, then $c\left(v_{i+k} \in A\right.$. Hence there are k vertices of C_{n} assigned colors from B.Consider two adjacent vertices of C_{n}, one of which is assigned a color from A and the other is assigned a color from B. We may assume that $c\left(v_{1}\right) \in A$ and c $\left(v_{2}\right) \in B$. Then $c\left(v_{k+1}\right) \in B$. Since D $\left(v_{2}, v_{k+1}\right)=k+1$, it follows that $\mid c\left(v_{2}\right)-c\left(v_{k+1}\right) \geq k-2$. Because $c\left(v_{2}\right)$, $c\left(v_{k+1}\right) \in B$, this implies that one of $c\left(v_{2}\right)$ and c $\left(\mathrm{v}_{\mathrm{k}+1}\right)$ is at least $2 \mathrm{k}-2$. This is a contradiction.

§ 3.1Proposition: If \mathbf{H} is a spanning connected sub graph of a graph G, then he (G) \leq hc (H) Proof.

Suppose that the order of H is n . Let c be a Hamiltonian coloring of H such that hc(c) hc (H). Then $D_{H}(u, v)+|c(u)-c(v)| \geq n-1$ for every two distinct vertices u and v of H. since $D_{G}(u, v) \geq D_{H}$ (u, v) for every two distinct vertices u and v of H, it follows that $\mathrm{D}_{\mathrm{G}}(\mathrm{u}, \mathrm{v})+|\mathrm{c}(\mathrm{u})-\mathrm{c}(\mathrm{v})| \geq \mathrm{n}-1$ and so c is a Hamiltonian coloring of G as well. Hence hc (G) $\leq \mathrm{hc}(\mathrm{c})=\mathrm{hc}(\mathrm{H})$.
§ 3.2 Proposition: Let H be a Hamiltonian graph of order $n-1 \geq 3$. If \mathbf{G} is a graph obtained by adding a pendant edge to H, then he $(G)=n-1$.
Proof. Suppose that $C=\left(v_{1}, v_{2} \ldots v_{n-1}, v_{1}\right)$ is a Hamiltonian cycle of H and $\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}$ is the pendant edge of G. Let c be a Hamiltonian coloring of G. Since D_{G} $(u, v) \leq n-2$ for every two distinct vertices u and v of C , no two vertices of C can be assigned the same color by c. Consequently, hc (c) >n-1 and so hc (G) $\geq \mathrm{n}-1$.
Now define a coloring c` of G by

$$
C^{1}\left(v_{i}\right)= \begin{cases}i & \text { if } 1<i<n-1 \\ n-1 & \text { if } i=n .\end{cases}
$$

We claim that $c^{`}$ is a Hamiltonian coloring of G. First let v_{j} and v_{k} be two vertices of C where $1 \leq \mathrm{j}<\mathrm{k} \leq \mathrm{n}$ -1 . The $\left|c^{1}+\left(v_{j}\right)-c^{1}\left(v_{k}\right)\right|=k-j$ and
$D\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)=\max \{\mathrm{k}-\mathrm{j},(\mathrm{n}-1)-(\mathrm{k}-\mathrm{j})\}$.
In either case, $D\left(v_{j}, v_{k}\right) \geq n-1+j-k$ and so
$D\left(v_{j}, v_{k}\right)+\left|c^{1}\left(v_{j}\right)-c^{1}\left(v_{k}\right)\right| \geq n-1$.
For $\left.\left.1 \leq \mathrm{j} \leq \mathrm{n}-1, \mid \mathrm{c}^{1}\left(\mathrm{v}_{\mathrm{j}}\right)-\mathrm{c}^{1}\right) \mathrm{v}_{\mathrm{n}}\right) \mid=\mathrm{n}-1-\mathrm{j}$, while
$\mathrm{D}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{n}}\right) \geq \max \{\mathrm{j}, \mathrm{n}-\mathrm{j}+1\}$

And so, $D\left(v_{j}, v_{n}\right) \geq j$.
Therefore,
$\mathrm{D}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{n}}\right)+\left|\mathrm{c}^{1}\left(\mathrm{v}_{\mathrm{j}}\right)-\mathrm{c}^{1}\left(\mathrm{v}_{\mathrm{n}}\right)\right| \geq \mathrm{n}-1$.
Hence, as claimed, c^{\prime} is a Hamiltonian coloring of G and so hc $(\mathrm{G}) \leq \mathrm{hc}\left(\mathrm{c}^{\prime}\right)=\mathrm{c}^{1}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}-1$.

IV. Theorem: for every connected graph G of order $n \geq 2$, hc $(G) \leq(n-2)^{2}+1$.

Proof. First, if G contains a vertex of degree $\mathrm{n}-1$, then G contains the star $K_{1, n-1}$ as a spanning sub graph. Since hc $\left(K_{1, \mathrm{n}-1}\right)=(\mathrm{n}-2)^{2}+1$ it follows by proposition 1 that $\mathrm{hc}(\mathrm{G}) \leq(\mathrm{n}-2)^{2}+1$. Hence we may assume that G contains a spanning tree T that is not a star and so its complement T contains a Hamiltonian path $\mathrm{P}=\left(\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{n}}\right)$. Thus $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} \notin \mathrm{E}(\mathrm{T})$ for $1 \leq \mathrm{i} \leq$ $\mathrm{n}-1$ and so $\mathrm{D}_{\mathrm{T}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+\mathrm{I}}\right) \geq 2$. Define a vertex coloring c of T by
$\mathrm{C}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}-2)+(\mathrm{i}-2)(\mathrm{n}-3)$ for $1 \leq \mathrm{i} \leq \mathrm{n}$.
Hence
hc $(\mathrm{c})=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right)=(\mathrm{n}-2)+(\mathrm{n}-2)(\mathrm{n}-3)=(\mathrm{n}-2)^{2}$
Therefore, for integers i and j with $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}$,

$$
\begin{aligned}
& \left|c\left(v_{i}\right)-c\left(v_{j}\right)\right|=(j-i)(n-3) . \\
& \text { If } j=i+1 \text {, then }
\end{aligned}
$$

$D\left(v_{i}, v_{j}\right)+\left(c\left(v_{i}\right)-c\left(v_{j}\right) \mid \geq 1+2(n-3)=2 n-5 \geq n-1\right.$.
Thus c is a Hamiltonian coloring of T. therefore,
$\mathrm{hc}(\mathrm{G}) \leq \mathrm{hc}(\mathrm{T}) \leq \mathrm{hc}(\mathrm{c})=\mathrm{c}\left(\mathrm{v}_{\mathrm{n}}\right)=(\mathrm{n}-2)^{2}<(\mathrm{n}-2)^{2}+1$, Which completes the proof

REFERENCES;

[1] G.Chartrand, L.Nebesky, and P.Zhang, Hamiltonian graphs. Discrete Appl.Math. 146(2005) 257-272.
[2] O.Ore Note on Hamalton circuits.Amer.Math.Monthly 67(1960)
[3] P.G Tait, Remarks on the colorings of maps proc.Royal soc.Edinburgh 10 (1880)
[4] H.Whitney, the Colorings of Graphs.Ann.Math. 33 (1932) 688-718.
[5] D.R.Woodall, List colourings of graphs. Survey in combinatories 2001 Cambridge univ. press, Cambridge,(2001) 269-301.

